Polynôme homogène de degré total n
Regardez d'autres dictionnaires:
homogène — [ ɔmɔʒɛn ] adj. • homogénée 1503; lat. scolast. homogeneus, gr. homogenês;cf. gène 1 ♦ (En parlant d un tout, d un ensemble) De structure uniforme; dont les éléments constitutifs, les parties, sont de même nature ou répartis de façon uniforme.… … Encyclopédie Universelle
Polynôme en plusieurs indéterminées — En algèbre, un polynôme en plusieurs indéterminées à coefficients dans un anneau A commutatif unitaire (et souvent intègre) est un élément d une structure d algèbre, qui est une extension de l algèbre des polynômes en une indéterminée. Il existe… … Wikipédia en Français
FORME — L’histoire du concept de forme et des théories de la forme est des plus singulières. Nous vivons dans un monde constitué de formes naturelles. Celles ci sont omniprésentes dans notre environnement et dans les représentations que nous nous en… … Encyclopédie Universelle
Liste des articles de mathematiques — Projet:Mathématiques/Liste des articles de mathématiques Cette page recense les articles relatifs aux mathématiques, qui sont liés aux portails de mathématiques, géométrie ou probabilités et statistiques via l un des trois bandeaux suivants … Wikipédia en Français
Projet:Mathématiques/Liste des articles de mathématiques — Cette page n est plus mise à jour depuis l arrêt de DumZiBoT. Pour demander sa remise en service, faire une requête sur WP:RBOT Cette page recense les articles relatifs aux mathématiques, qui sont liés aux portails de mathématiques, géométrie ou… … Wikipédia en Français
Théorème de Bézout — Cet article discute du théorème de Bézout en géométrie algébrique. Pour le théorème de Bézout en arithmétique, voir théorème de Bachet Bézout. Nombre de points d intersection entre deux courbes algébriques projectives, le quadrifolium (en bleu) d … Wikipédia en Français
DÉRIVÉES PARTIELLES (ÉQUATIONS AUX) - Théorie linéaire — Il existe une théorie mathématique assez bien constituée des équations aux dérivées partielles linéaires, dont nous allons essayer de donner une idée. En contraste, les équations non linéaires présentent un foisonnement de problèmes et de… … Encyclopédie Universelle
SINGULARITÉS DES FONCTIONS DIFFÉRENTIABLES (la théorie mathématique et ses applications) — De la topologie différentielle à la dynamique qualitative, en passant par la géométrie analytique et la topologie algébrique, les «singularités» ont bien des incarnations en mathématiques; mais cela n’exclut pas une certaine unité: qu’il s’agisse … Encyclopédie Universelle
Drapeau (mathématiques) — Pour les articles homonymes, voir Drapeau (homonymie). En mathématiques, un drapeau d un espace vectoriel de dimension finie E est une suite finie croissante de sous espaces vectoriels de E, commençant par l espace nul {0} et se terminant par l… … Wikipédia en Français
AÉRODYNAMIQUE — L’aérodynamique, dont l’étymologie évoque immédiatement l’action de l’air en mouvement, est la science qui étudie les différents aspects de cette action, notamment les forces, pressions et moments qui résultent du déplacement des corps dans… … Encyclopédie Universelle